
GameState 
INHERITS FROM Object
DECLARED IN OpponentApp/GameState.h

CLASS DESCRIPTION
The GameState class maintains the state of a Ragnarok game: where the 
pieces are, what turn it is, and the game history.    When a Ragnarok 
application communicates with another Ragnarok application over the 
network, or with a computer opponent, it sends instances of the GameState 
class.

CONSTANTS AND DEFINED TYPES



The 37 pieces are Ragnarok are numbered as follows: 0¼23 are the White 
pawns, 24¼35 are the Black pawns, and 36 is Loki.

The constants CENTER, CORNER, OFFBOARD, and PLAIN refer to whether 
a particular location is the center of the board, a corner, an off-board 
(unused) square, or just a plain old square.

The constants NOBODY, W_PAWN, B_PAWN, and LOKI refer to the 
occupancy of a square.

The constants BLACK, WHITE, BLACK_WON, WHITE_WON, and DRAW 
refer to the state of the game (how the game ended, or whose turn it is).

In Ragnarok, squares are labeled a¼k horizontally, and 1¼11 vertically.    
Inside the Ragnarok program, they are referenced by as ordered pairs: 
<0¼10, 0¼10>.    For efficiency, in the GameState data structures, locations 



are encoded as unsigned char's.    The macro XYTONUM(x,y) returns the 
encoding of the ordered pair <x,y>.    The macro NUMTOX(num) returns the 
first element of the pair encoded by num, and NUMTOY(num) returns the 
second element of the pair encoded by num.    Adding EAST to an encoding 
num results in the encoding of the location one square east of the location 
referenced by num.    WEST, NORTH, and SOUTH work similarly.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in GameState unsigned char pieceLocs[37];

struct spot {
unsigned char who;
unsigned char idnum;

} pieces[256];



unsigned char whoseTurn;
unsigned char numPawns[2];
struct move {

unsigned char from;
unsigned char to;

} moves[1024];
short numMoves;
struct capture {

short when;
unsigned char where;
unsigned char idnum;

} captures;
short numCaptures;

pieceLocs The encoded locations of the pieces.



pieces A list of the piece types and locations, 
indexed by location on the board.

whoseTurn The state of the game: White's turn, Black's 
turn, game drawn, White victory, or Black 
victory.

numPawns How many pawns each side has.

moves The moves made in the game.

numMoves How many moves have been made in the 
game.

captures The captures made in the game.



numCaptures How many captures have been made in the 
game.

METHOD TYPES

Initializing the class + initialize
Initializing a new GameState - init

- resetState
Making moves - makeMove:

- makeWhiteMove:
- makeBlackMove:

Undoing moves - undoMove
- undoWhiteMove



- undoBlackMove

Questions about moves - anyLegalMoves
- checkMove:

Archiving - read:
- write:

CLASS METHODS

initialize
+ initialize
Prepares internal class variables.    Returns self.



INSTANCE METHODS

anyLegalMoves
- (BOOL)anyLegalMoves
Returns YES if there are any legal moves from the current position.

checkMove
- (BOOL)checkMove:(struct move)request

Returns YES if request is a legal move from the current position.

init
- init
Initializes the GameState, which must be a newly allocated GameState 
instance.    Returns self.



makeMove:
- (void)makeMove:(struct move)request

Makes the move request, which should be a legal move.    The legality of the 
move is not checked, so be careful.    This method simply calls 
makeWhiteMove: or makeBlackMove:, depending on whose turn it is.

makeWhiteMove:
- (void)makeWhiteMove:(struct move)request

Makes the move request, which should be a legal move for White to make 
(i.e. the move is legal and it's White's turn).    The legality of the move is not 
checked, so be careful.

makeBlackMove:
- (void)makeBlackMove:(struct move)request



Makes the move request, which should be a legal move for Black to make (i.e.
the move is legal and it's Black's turn).    The legality of the move is not 
checked, so be careful.

read:
- read:(NXTypedStream *)stream

Reads the GameState from the typed stream stream.

resetState
- (void)resetState
Resets the GameState to the starting position.

undoMove
- (void)undoMove



Undoes the last move made in the GameState, in which there should be at 
least one move made.    This method simply calls undoWhiteMove or 
undoBlackMove, depending on whose turn it was.

undoWhiteMove
- (void)undoWhiteMove
Undoes the last move made in the GameState, in which there should be at 
least one move made.    Also, it should be Black's turn (so that the last move 
made was a White move).

undoBlackMove
- (void)undoBlackMove
Undoes the last move made in the GameState, in which there should be at 
least one move made.    Also, it should be White's turn (so that the last move 



made was a Black move).

write:
- write:(NXTypedStream *)stream

Writes the GameState to the typed stream stream.


